Spanning Trees with Many Leaves in Graphs without Diamonds and Blossoms
نویسندگان
چکیده
It is known that graphs on n vertices with minimum degree at least 3 have spanning trees with at least n/4 + 2 leaves and that this can be improved to (n + 4)/3 for cubic graphs without the diamond K4 − e as a subgraph. We generalize the second result by proving that every graph with minimum degree at least 3, without diamonds and certain subgraphs called blossoms, has a spanning tree with at least (n+4)/3 leaves, and generalize this further by allowing vertices of lower degree. We show that it is necessary to exclude blossoms in order to obtain a bound of the form n/3 + c. We use the new bound to obtain a simple FPT algorithm, which decides in O(m) + O(6.75) time whether a graph of size m has a spanning tree with at least k leaves. This improves the best known time complexity for Max Leaf Spanning Tree.
منابع مشابه
Spanning trees with many leaves: new extremal results and an improved FPT algorithm
We present two lower bounds for the maximum number of leaves in a spanning tree of a graph. For connected graphs without triangles, with minimum degree at least three, we show that a spanning tree with at least (n + 4)/3 leaves exists, where n is the number of vertices of the graph. For connected graphs with minimum degree at least three, that contain D diamonds induced by vertices of degree th...
متن کاملCounting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملAztec Diamonds, Checkerboard Graphs, and Spanning Trees
This note derives the characteristic polynomial of a graph that represents nonjump moves in a generalized game of checkers. The number of spanning trees is also determined.
متن کاملNUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS
In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...
متن کاملSymmetry classes of spanning trees of Aztec diamonds and perfect matchings of odd squares with a unit hole
We say that two graphs are similar if their adjacency matrices are similar matrices. We show that the square grid Gn of order n is similar to the disjoint union of two copies of the quartered Aztec diamond QADn−1 of order n− 1 with the path P (2) n on n vertices having edge weights equal to 2. Our proof is based on an explicit change of basis in the vector space on which the adjacency matrix ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008